<u>Section 3.4</u> Angles of a Triangle

A Triangle is the figure formed by three segments joining three noncollinear points. B Each of the points is a <u>vertex</u> of the triangle.

Vertices: A, B, C

Angles: $\angle A, \angle B, \angle C$

The segments are the sides of the triangle.

Sides: AB, BC, AC

Example: $\triangle ABC$

Side \overline{BC} is opposite $\angle A$ Side \overline{AC} is opposite $\angle B$ Side \overline{AB} is opposite $\angle C$

Side \overline{AB} is included between $\angle \underline{A}$ and $\angle \underline{B}$

Side \overline{AC} is included between $\angle \underline{A}$ and $\angle \underline{C}$

Side \overline{BC} is included between $\angle \underline{B}$ and $\angle \underline{C}$

Theorem 3-11: the sum of the angles of a triangle is <u>180</u>.

Given: AB II DC

Prove: $m \angle 1 + m \angle 2 + m \angle 3 = 180$

- 1. AB II DC
- 2. m $\angle 1$ = m $\angle 4$; $m \angle 3 = m \angle 5$

- 1. Given
- 2. If two parallel lines are cut by a transversal, then alternate interior angles are congruent.
- 3. m $\angle ABC = m \angle 4 + m \angle 2$
- 4. m $\angle ABC + m \angle 5 = 180$.
- 5. $m \angle 4 + m \angle 2 + m \angle 5 = 180$ 5. Substitution
- 6. $m \angle 1 + m \angle 2 + m \angle 3 = 180$ 6. Substitution

- 3. Angle Addition Postulate
- 4. Angle Addition Postulate

Algebra Connection

$$B = 9$$

 $11x - 9$
 $3x + 15$
 $9x - 2$
 C
 $m \angle A = 3(7.3) + 15$
 $m \angle A = 36.9$
 $m \angle C = 9(7.3) - 2$
 $m \angle C = 63.7$

$$3x + 15 + 9x - 2 + 11x - \frac{9}{10} = 180$$
$$m \angle B = 11(7.3) - \frac{9}{10}$$
$$m \angle B = 79.4$$

$$23x = 167.9$$

An <u>exterior</u> angle if formed when one side of a triangle is extended.

The <u>remote interior</u> angles are two angles of a triangle not adjacent to the exterior angle. Theorem 3-12: The measure of an <u>exterior</u> angle of a triangle equals the sum of the measures of the two <u>remote interior</u> angles.

$$m \angle 3 + m \angle 5 = m \angle 1$$

$$m \angle 2 + m \angle 3 = m \angle 6$$

$$m \angle 2 + m \angle 5 = m \angle 4$$

$$m \angle 3 + m \angle 5 = m \angle 1$$

$$m \angle 2 + m \angle 3 = m \angle 6$$

$$m \angle 2 + m \angle 5 = m \angle 4$$

3x - 1 + 7x - 2 = 12x - 27

10x - 3 = 12x - 27

24 = 2x

WT

• What is the name for an extra line drawn to aid in a proof?

 Lines that are on opposite sides of the transversal contained within two lines that are cut by a transversal are called ______.

My favorite TV show is _____

Homework Check – page 97

- Numbers 1-4: Volunteers to draw on board?
- 5. 180 12. x = 110, y = 70
- 6. 30 13. x = 40, y = 50
- 7.95
- 8.50
- 9.25
- 10.360
- 11. x = 30, y = 80

Algebra Connection

2y + 90 = 130 4x2y = 40 4xy = 20 x =

4x + 130 = 180 4x = 50 x = 12.5

<u>Postulate</u> – a statement that is accepted without proof

• Theorem – a statement that can be proved

 <u>Corollary</u> – a statement that can be proved by applying a theorem is a corollary of that theorem

Corollaries for this Section

Corollary 1

 If the two angles of one triangle are congruent to two angles of another triangle, then the third angles are congruent

Corollary 2

Each angle of an equiangular triangle has a measure of 60 degrees

Corollary 3

In a triangle, there can be at most one right angle or one obtuse angle

Corollary 4

The acute angles of a right triangle are complementary

Polygons

Examples

line segments (straight)

Polygon means "Many Angles"

- Closed figure, and sides are

Not Polygons

<u>Convex Polygon</u> - any polygon such that no line segment can be drawn between two vertices on the exterior of the polygon.

Regular Polygon - a polygon that is both equilateral and equiangular. Notation on figure**

<u>Diagonal</u> – a segment joining two nonconsecutive vertices of a convex polygon.

Theorem 3-13:

The sum of the measures of the interior angles of a convex polygon with <u>n</u> sides is (n-2) * 180

Theorem 3-14:

The sum of the measures of the exterior angles of any convex polygon, one angle at each vertex is <u>360°</u>

Number of Sides	Name	Sum of Interior Angles	Measure of each angle (if the polygon is regular)
3	Triangle	180°	60°
4	Quadrilateral	360°	90°
5	Pentagon	540°	108°
6	Hexagon	720°	120°
7	Heptagon	900°	128.57°
8	Octagon	1080°	135°
9	Nonagon	1260°	140°
10	Decagon	1440°	144°
n	n-gon	(n - 2)x180°	$\frac{(n-2)\times 180}{n}$

Number of Sides	Sum of Exterior Angles	Measure of EACH exterior angle (if the polygon is regular)
3	360°	120°
4	360°	90°
5	360°	72°
6	360°	60°
7	360°	51.43°
8	360°	45°
9	360°	40°
10	360°	36°
n	360°	360